哈希是一种计算机算法,(英语:Hash function)又称散列算法、哈希函数,是一种从任何一种数据中创建小的数字“指纹”的方法。散列函数把消息或数据压缩成摘要,使得数据量变小,......
智能合约  ·  2024-12-14 06:19
    谷歌新量子芯片实现精度里程碑       12月9日,一项发表于《自然》的新研究表示,谷歌的研究人员开发的一款新芯片首次实现了“低于阈值”的量子计算。这是探索构建足够精确且...
智能合约  ·  2024-12-14 03:19
智能合约  ·  2024-12-14 02:24
文章浏览阅读582次。文章介绍了基于特征选择的局部敏感哈希位选择算法,旨在解决长哈希码带来的存储和计算问题。通过10种特征选择方法去除冗余哈希位,实验表明这种方法能在保持性能的同时显著减少哈希位,最高可减少70%的哈希位。...
智能合约  ·  2024-12-14 02:20
上一年记录的东西,整理下... 需要代码联系我QQ:1198552415,本人不做义务咨询。 一.哈希检索概述 LSH是Locality Sensitive Hashing的缩写,也翻译为局部敏感哈希,是一种通过设计满足特殊性质即局部敏感的哈希函数,提高相似查询效率的方法。虽然从正式提出距今不过十余...
文章浏览阅读5.8k次,点赞11次,收藏63次。本文介绍了局部敏感哈希(LSH)的概念,如何通过哈希函数创造碰撞冲突来加速高维数据的最近邻查找。Python代码实例展示了如何使用`EuclideanLSH`和`datasketch`库来构建LSH索引并进行查询。同时,对比了LSH与传统方法的效率提升...
智能合约  ·  2024-12-14 02:17
这篇文章介绍了局部敏感哈希算法,局部敏感哈希是非监督的哈希算法。 算法的输入是实数域的特征向量,输出为一个binary vector。 利用哈希函数将数据点映射到不同的桶中是一种保形映射,使得数据点 i 和数据点&#16...
智能合约  ·  2024-12-14 02:13
局部敏感哈希算法(Locality Sensitive Hashing,LSH) LSH是一种利用hash的方法,对向量进行快速近邻检索的方法,能高效处理海量高维数据的最近邻问题。LSH也是一种降维技术。 一般的hash算法我们知道当两个内容比较接近但不完全相同时hash值可能有比较大的差别,比如m...
智能合约  ·  2024-12-14 02:06
文章浏览阅读4.9k次。局部敏感哈希算法主要用于海量高维数据的相似性查询,通过选取特定的哈希函数,将相邻数据映射到相近的哈希桶,简化相似数据的检索。算法包括构建索引集、确定L和K的数量以及实际查询过程。常见的相似度计算方法有欧式距离、Jaccard距离、余弦距离、汉明距离和曼哈顿距离。通过调整L和K...
智能合约  ·  2024-12-14 02:02
文章浏览阅读85次。  局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法。局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异。它的主要作用就是从海量的数据中挖掘出相似的...
智能合约  ·  2024-12-14 01:58
智能合约  ·  2024-12-14 00:34
服务器 服务器产品 轮询算法是最简单和最常见的负载均衡算法之一,其实现思路也非常直接:按预定顺序将请求依次转发到后端服务器。通常要求服务实例是无状态的。 负载均衡是指将来自客户端的请求分配到多个服务器上进行处理,从而有效地提高系统性能、可用性和可扩展性。常见的负载均衡算法包括轮询、加权轮询、随机、加...